

6 Isolated 2 or 3 wire RTD Inputs (6 RTD ISO) Module M1433B

General Description

The M1433B 6 RTD ISO module consists of six isolated analog inputs where each input can be configured as a 2 or 3 wire RTD input. The RTD types and ranges handled by the module are as follows:-

Type	Min	Max
Pt-100	-200°C	+850°C
Ni-120	-80°C	+320°C

The RTD inputs are linearised in the module by means of a lookup table. The actual temperature value in degrees Celsius or degrees Fahrenheit is presented to the Maxiflex CPU in signed integer format to 0.1 degrees resolution.

The data presentation format and RTD type for each input is downloaded to the module data registers by the Maxiflex CPU user application Ezi-forth program. Should a power failure occur, or the module is replaced, then the module will have to be re-initialised by the Maxiflex CPU module.

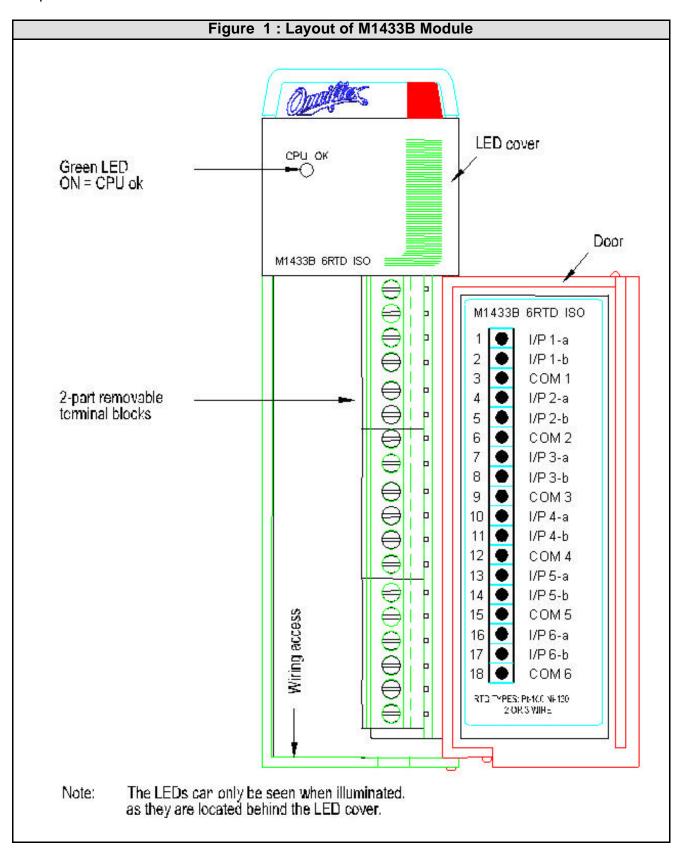
Over-range and under-range inputs are read as +32767 and -32767 values respectively for the particular input selected. In addition, each input has four programmable trip setpoints and a deadband value. A status register is then used to indicate the status of each trip setpoint.

Isolation of 1500 VACrms is provided between the inputs and bus logic. Isolation of 500 VACrms is provided between inputs.

The module plugs into any I/O slot and has a Scan Code and Module ID which are used by the CPU module to detect the module and run the appropriate driver for the module. A CPU OK green LED is viewable through the front cover which shows the status of the module as follows:-

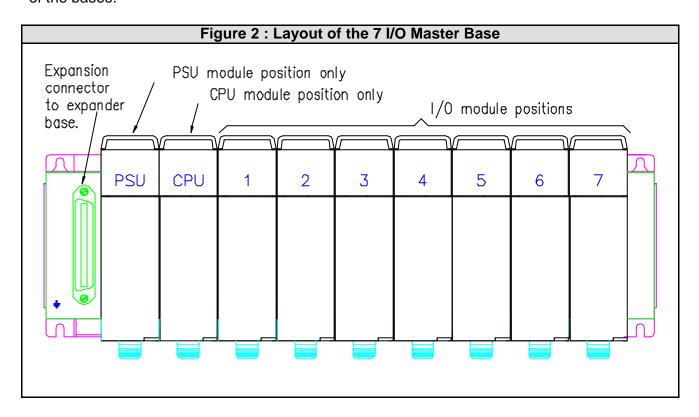
Table 1 – LED Indicator

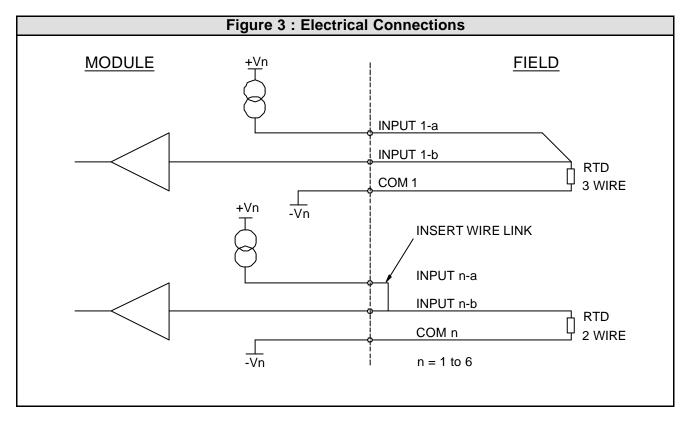
CPU OK	MODULE
On	Operating correctly
Flashing	Failure
Off	No power or failure


With the aid of an accurate ohm source and the M1433B Ezi-forth calibration program*, the module can be field calibrated by the user. The module is factory calibrated at an ambient temperature of ±25°C.

Removing/Replacing LED Cover

Remove top screw and lift off vent cover.


- 2. Open the door and gently force down the door until the door is free of the LED cover. Remove door.
- 3. Holding the LED cover, gently force the housing apart until the LED cover is freed.


Replace in reverse order.

Installation

The M1433B can be installed in any I/O slot of a Maxiflex base located on the right hand side of the bases.

Module Memory Map

The input type, data display format and setpoints configuration for each input are downloaded to the module by the Maxiflex CPU user application Ezi-forth program. The layout and

description of the modules registers are provided in the Table below, as well as a sample forth program that configures and reads a module's inputs. If after configuration the module loses power for any reason, then the module will revert back to default values and the module will therefore have to be reconfigured.

Table 2: M1433B Memory Map

	,		1
Register	Description	Register	
0	Scancode (41) MSB	31	Input 1 F
	Module ID (49) LSB	32	Input 1 L
1	Input 1 Value	33	Input 1 L
2	Input 2 Value	34	Input 1 D
3	Input 3 Value	35	Input 2 F
4	Input 4 Value	36	Input 2 F
5	Input 5 Value	37	Input 2 L
6	Input 6 Value	38	Input 2 L
7	Spare	39	Input 2 D
8	Spare	40	Input 3 F
9	Input 1 Status	41	Input 3 F
10	Input 2 Status	42	Input 3 L
11	Input 3 Status	43	Input 3 L
12	Input 4 Status	44	Input 3 D
13	Input 5 Status	45	Input 4 F
14	Input 6 Status	46	Input 4 F
15	Spare	47	Input 4 L
16	Spare	48	Input 4 L
17	Input 1 Type	49	Input 4 D
18	Input 2 Type	50	Input 5 H
19	Input 3 Type	51	Input 5 H
20	Input 4 Type	52	Input 5 L
21	Input 5 Type	53	Input 5 L
22	Input 6 Type	54	Input 5 D
23	Spare	55	Input 6 F
24	Spare	56	Input 6 H
25	Spare	57	Input 6 L
26	Temperature Format	58	Input 6 L
27	Spare	59	Input 6 E
28	Spare	60-80	Spare
29	Spare	81	Firmwar
30	Input 1 High High Limit	82	Calibrati

Register	Description	
31	Input 1 High Limit	
32	Input 1 Low Limit	
33	Input 1 Low Low Limit	
34	Input 1 Deadband	
35	Input 2 High High Limit	
36	Input 2 High Limit	
37	Input 2 Low Limit	
38	Input 2 Low Low Limit	
39	Input 2 Deadband	
40	Input 3 High High Limit	
41	Input 3 High Limit	
42	Input 3 Low Limit	
43	Input 3 Low Low Limit	
44	Input 3 Deadband	
45	Input 4 High High Limit	
46	Input 4 High Limit	
47	Input 4 Low Limit	
48	Input 4 Low Low Limit	
49	Input 4 Deadband	
50	Input 5 High High Limit	
51	Input 5 High Limit	
52	Input 5 Low Limit	
53	Input 5 Low Low Limit	
54	Input 5 Deadband	
55	Input 6 High High Limit	
56	Input 6 High Limit	
57	Input 6 Low Limit	
58	Input 6 Low Low Limit	
59	Input 6 Deadband	
60-80	Spare	
81	Firmware Version Number	
82	Calibration Done Flag	
llibrate the module		

^{* -} used by the M1433B Ezi-Forth calibration program to calibrate the module

Scancode and Module ID

The scancode and module ID's are used by the Maxiflex CPU module to detect and identify the M1433B module. The scancode is 41 and the module ID is 49. Refer to Table 2 for the addresses.

Input Values

This table consists of six integer values corresponding to inputs 1 to 6. The output value is a °F or °C signed integer value to 0.1 degrees resolution. Refer to Table 2 for the addresses.

Input Status

This table contains one register per input. If a particular trip limit is transgressed then its corresponding bit is set. If D4 is set, then EEprom has been corrupted and the module needs re-calibration. If D5 is set, then user configuration data has been corrupted and the user must re-configure the module. If D6 is set, then the incorrect input type has been downloaded to the module. Table 3 lists the allocation of the bits. Refer to Table 2 for the address of the individual inputs status registers.

Table 3 : Format of Input Status register		
Input >= High Limit	D0 = 1	
Input >= High High Limit	D1 = 1	
Input <= Low Limit	D2 = 1	
Input <= Low Low Limit	D3 = 1	
Calibration EEprom Corrupted	D4 = 1	
Configuration Ram Corrupted D5 = 1		
Input Type Selection Incorrect	D6 = 1	

D7 not used. Default set to zero.

Input Types

This table consists of six integer values corresponding to input types 1 to 6. Table 4 below lists the various input types and their corresponding input type numbers. Refer to Table 2 for the addresses

Table 4 : Input Types		
Input Type No Description		
0	Input not used*	
100	Pt-100	
101	Ni-120	

^{* -} default value

Temperature Format

This register indicates whether the temperature should be displayed in degrees celsius or in degrees fahrenheit. The default setting is zero which indicates that temperatures will be displayed in degrees celsius. If the register is non-zero, the temperatures will be displayed in degrees fahrenheit. Refer to Table 2 for the addresses.

Trip Limits

This Table contains two high trip limits, two low trip limits, and a deadband for each input. The limits are used to determine if the input signal has transgressed a particular limit. Refer to Table 2 for the addresses. Default value zero. The format is the same as the display format above.

Firmware Version Number

The register contains the installed firmware version number in hex format.

Calibration Done Flag

The value of one indicates the module has been calibrated. Any other value indicates calibration not done or corrupt.

Sample Forth Program

The following program provides a "TO" and a "FROM" command which allows the module's registers to be directly accessed. The program assumes that the module is in slot 3 and configures it as follows: All inputs set to Pt-100 RTD and all inputs set to display °C. The trip limits are set as follows: High High = 600.0°C, High = 500.0°C, Low = 200.0°C, Low Low = 100.0°C and deadband = 20.0°C.

```
FORGET ALL
: ALL;
3 CONSTANT SLOT3
100 CONSTANT PT_100
30 CONSTANT INPUT 1 HH
31 CONSTANT INPUT_1_H
32 CONSTANT INPUT 1 L
33 CONSTANT INP UT_1_LL
34 CONSTANT INPUT_1_DB
: TO (value reg slot---) 33 BIOS
: FROM ( reg slot --- value ) 32 BIOS
: CONFIG_MOD
 7 1 DO
   PT_100 I 16 + SLOT3 TO ( set all inputs to PT-100 )
    6000 I 1 - 5 * INPUT_1_HH + SLOT3 TO (HH trip = 600.0 \,^{\circ}C)
    5000 I 1 - 5 * INPUT_1_H + SLOT3 TO ( H trip = 500.0 °C )
    2000 I 1 - 5 * INPUT_1_L + SLOT3 TO (L trip = 200.0 \,^{\circ}C)
    1000 I 1 - 5 * INPUT_1_LL + SLOT3 TO (LL trip = 100.0 °C)
    200 I 1 - 5 * INPUT_1_DB + SLOT3 TO (DB = 20.0 \,^{\circ}C)
: RD_INPUTS
 CR
 7 1 DO
   ." TEMP = " I SLOTS3 FROM .
                                              (read input value)
   ." STATUS =" I 8 + SLOT3 FROM.CR
                                              (read input value)
   LOOP
 CR
```

Specifications		
Inputs		
Quantity	6	
RTD type	Pt-100 or Ni-120 (Software selectable)	
Range	Pt-100 : -200C to +850°C Ni-120 : -80°C to +320°C	
Dorformanco		

Performance					
RTD Type	Operating Lower	Range Upper	Typical Error	Maximum Error	
Pt-100	200°C	850 °C	0.5°C	1.0°C	
Ni-120	-80 °C	320 °C	0.5°C	1.0°C	
Accuracy		Typ/max read	Typ/max reading error from above table		
Line resistance		1000 ohm/leg	1000 ohm/leg balanced maximum		
Line effect		0.5°C per 1000	0.5°C per 100Ω balanced line resistance		
Drift		100ppm/°C typ	100ppm/°C typ		
Linearization Technique		Software brea	Software breakpoint with linear interpolation		
Number of inputs		6 (max)	6 (max)		
Resolution		0.1°C /0.1°F	0.1°C /0.1°F		

	Specifications
Display	°C or °F (software configurable)
Response Time	
Step Input	10% to 90%. Settles to within 3% in 200ms
Isolation	
Input to system logic	1500 VACrms
Input to input	500 VACrms
Insulation	
Input to system logic	$>$ 20M Ω at 500 V dc
Interference Rejection	
CMRR @50Hz	No effect up to 400 VACrms
MMRR @50Hz	50 dB
Power Supply	
Voltage	+5 V dc ± 5%
Current	300 mA (maximum)
Environmental	
Operating Temperature	0°C to 60°C
Storage Temperature	-40°C to +85°C
Operating Humidity	5% to 95% (non-condensing)
Identification Codes	
Scan Code	41
Module ID	49
Mass	
Including Packaging	505g
Excluding Packaging	419g
Ordering Information	
Order Code	M1433B