
CONNECTION DIAGRAM

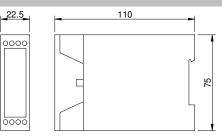
© Omniflex 2010

IGC2405BR01 (Document Part No 8.0101.055) **(**E

OMNITERM TWA Model C2405B

ACrms Voltage/Current Two-Wire Transmitter

The OMNITERM TWA two-wire ac rms Voltage/Current Transmitter accepts an ac input signal from 0-300Vac or 0-5Amps ac , using advanced state-of-the-art digital measurement techniques, combined with extremely user friendly software configurability.


The TWA module draws its power from the 4-20mA output loop.

Full isolation (input/output) to 2500Vac ensures trouble-free accurate measurement. Mount the TWA close to the point of measurement for most accurate operation.

FEATURES

- Measure true ACrms Voltage or current
- Easy User software configuration
- Input to Output isolation to 2500Vac
- Linearised temperature measurement
- 9-33 Volt dc powered
- Wide operating temperature range
- Narrow 22.5mm housing width
- DIN Rail (35x7mm) or surface mounting

MECHANICAL DETAILS

CONFIGURATION

Configuration is performed using the OMNISET Software Configuration Utility running on a Windows PC, using the programming socket in the front of the module.

The Configuration is downloaded to the TWA product using a Model C1168 Programming Cable available from OMNIFLEX.

Product Specifications

Unless otherwise stated, all specifications refer to Model C2405B

Power Supply

Supply Voltage

Supply voltage	Loop powered from the output loop
Input	
Number of Inputs	1
Type (select by connection)	0-5A ac rms or 0-300Vac rms
AC Current Input	
Input Impedance	50 milliohms maximum
Minimum Signal Span	0 – 0.5A rms
Maximum Signal Span	0 – 5A rms (continuous current)
Maximum Overload Current	50 Amp for 3 seconds
AC Voltage Input	
Input Impedance	200k minimum
Minimum Signal Span	0 – 30V rms
Maximum Signal Span	0 – 300V rms
Maximum Overload Voltage	500Vac for 1 second
Output	

4 -20mA

9Vdc

33Vdc

Loop powered from the output loop

Accuracy

Output Current Range

Minimum Supply Voltage

Maximum Supply Voltage

Maximum Load Resistance

Initial Error	< 0.25%
Non-Linearity	<0.1%
Distortion Error	< 1% for Crest Factor of 6
Temperature Drift	< 200ppm/°C of reading ¹

100 ohms with 12Vdc supply min. 250 ohms with 15Vdc supply min. 500 ohms with 20Vdc supply min. 700 ohms with 24Vdc supply min. 1000 ohms with 30Vdc supply min.

Environmental Conditions

Operating Temperature	-10 °C − 60 °C (+14 °F − 140 °F)
Storage Temperature	-25°C − 85°C (-13°F − 185°F)

Compliance with Standards

Safety	EN 60950:1995 Note: When used with ac voltage inputs greater than 60V, additional safety precautions in installation and marking are required to comply with safety standards.
Emissions	EN 55011:1997 Grp I, CI A
Immunity – ESD & RF Fields	IEC 61000-4-2:2001, Lvl 3; IEC 61000-4-3:1995, Lvl 3
Immunity – Fast Transients	IEC 61000-4-4:2004 : 2 kV - DC power; 1 kV - I/O lines
Insulation	Basic Insulation between isolated circuits per IEC950
Insulation Test Voltage	Input/Output/Supply 100% tested to 2500Vac

Page 2 IGC2405BR01 (Document Part No 8.0101.055)

Specifications continued... Functional Safety to IEC 61508

	See Separate Reliability Datasheet RDC2405
Mechanical	
Dimensions (W x H x D)	22.5mm x 75mm x 110mm
Mounting	DIN Rail EN5022-35 or screws to vertical surface
Housing	Shock Resistant ABS
Flammability	III 94-HB (housing) III 94-V0 (terminals)

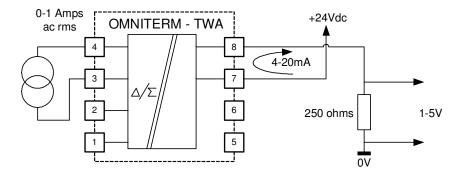
Suitable for use in SIL 1 Applications.

Unpacked 130g approx.; Packed 160g approx.

Note:1 This parameter not 100% production tested

Weight

CONFIGURATION INSTRUCTIONS


The unit can be configured before or after installation.

To download configuration to the Omniterm TWA, ensure that the Omniterm TWA is powered. In the workshop, apply 24Vdc to terminals 7(+) and 8(-).

Use PC based OMNISET Configuration Software with TWA Template, and Model C1168 Programming Cable to set the all configuration parameters in the Omniterm TWA.

See Help in TWA Template for more detailed procedure.

APPLICATION EXAMPLE

